Comprehensive Analysis of the Relationship Between Real-Time Traffic Surveillance Data and Rear-End Crashes on Freeways

نویسندگان

  • Anurag Pande
  • Mohamed Abdel-Aty
چکیده

Rear-end collisions are the single most frequent type of crash on freeways. Their impact on freeway operation is also most noticeable because almost all of them occur during periods of medium to heavy demand. Preliminary explorations of average traffic speeds before a crash measured at loop detector stations surrounding the crash location showed that rear-end crashes can be placed into two mutually exclusive groups: first, those that occur under extended congestion and, second, those that occur with relatively free-flow conditions prevailing 5 to 10 min before the crash. With loop detector data preceding these two groups of rear-end crashes contrasted with randomly selected noncrash data, it was found that the first group can be attributed to parameters such as the coefficient of variation in speed and average occupancy measurable through loop detectors at stations in the close vicinity of the crash location. For the second group, traffic parameters such as average speed and occupancy at stations downstream of the crash location were significant as were off-line factors such as the time of day and presence of an on-ramp in the downstream direction. It was also observed that traffic conditions belonging to the first segment occurred rarely on the freeway but still made up about half the rear-end crashes. This observation, along with neural network-based classifiers, has been used to propose a strategy for real-time identification of conditions prone to the rear-end crashes. The strategy can potentially identify almost 75% of rear-end crashes, with reasonable false alarms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of data mining techniques for real-time crash risk assessment on freeways

Data mining is the analysis of large "observational" datasets to find unsuspected relationships that might be useful to the data owner. It typically involves analysis where objectives of the mining exercise have no bearing on the data collection strategy. Freeway traffic surveillance data collected through underground loop detectors is one such "observational" database maintained for various IT...

متن کامل

A Computing Approach Using Probabilistic Neural Networks for Instantaneous Appraisal of Rear-End Crash Risk

Computing and information technology has significantly increased the capabilities to collect, store, and analyze freeway traffic surveillance data. The most common forms of such data are collected using the underground loop detectors. In the recent past the potential of using these data for identification of crash-prone conditions has been explored. In the present work, application of probabili...

متن کامل

Implementation of Random Forest Algorithm in Order to Use Big Data to Improve Real-Time Traffic Monitoring and Safety

Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the pe...

متن کامل

A Monte Carlo Simulation of Chain Reaction Rear End Potential Collisions on Freeways

In recent research on modelling road collisions very little attention has been paid  to rear-end chain reaction collisions, which is characterized by more than two vehicles involved in a collision at the same time. The core aim of the present research is to develop a methodology to estimate such potential collision probabilities based on a proactive perspective, where deceleration rate to avoid...

متن کامل

Estimation of rear-end vehicle crash frequencies in urban road tunnels.

According to The Handbook of Tunnel Fire Safety, over 90% (55 out of 61 cases) of fires in road tunnels are caused by vehicle crashes (especially rear-end crashes). It is thus important to develop a proper methodology that is able to estimate the rear-end vehicle crash frequency in road tunnels. In this paper, we first analyze the time to collision (TTC) data collected from two road tunnels of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011